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Abstract:   

Background: Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic beta cells 

are destroyed by infiltrating immune cells. Bilateral cooperation of pancreatic beta cells and 

immune cells has been proposed in progression of T1D, but there is no systems study to 

investigate it. Here, we aimed to explicate etiological molecular basis and identify key genes 

associated to T1D risk by network biology approach in two circumstances. 

Methods: We integrated interactome (protein-protein interaction (PPI)) and transcriptomes 

data data of transcriptomes to construct networks of differentially expressed genes in 

peripheral blood mononuclear cells (PBMCs) and pancreatic beta cells. Centrality , 

modularity and  clique analyses of the networks were implemented to get more meaningful 

biological information. 

Results: By analysis of genes expression profiles, we found several cytokines and 

chemokines in beta cells and their receptors in PBMCs, which is propagation in the dialog 

between these two tissues within their protein-protein interactions. High connectivity (hub) 

and high betweenness (bottleneck) nodes were identified by analyzing of PPI networks to be 

biologically significant nodes. Then, functional modules and complexes were determined to 

reveal biological pathways. Immune response, apoptosis, spliceosome, proteasome and 

pathways of protein synthesis were the most significant pathways in the tissues. Finally, 

YBX1, SRPK1, PSMA1, PSMA3, XRCC6, CBL, SRC, PIK3R1, PLCG1, SHC1 and UBE2N 

were identified as key markers which were hub-bottleneck nodes involved in functional 

modules and complexes. 

Conclusions: Our results provided a better understanding of T1D pathogenesis as well as new 

insight into network biomarkers which may be considered as potential therapeutic targets. 
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Key points 

The significant findings of the study: This is the first study which propagated the concept of 

dialog between pancreatic islets and immune system in T1D via systems biology view. 

Interactome-transcriptome analysis revealed high centrality genes differentially expressed in 

PBMCs and pancreatic beta cells in T1D.     

This study adds: This study delineated more potential undergoing mechanisms of T1D and 

identified key markers for more experimental validation by network biology analysis of two 

involved tissues. 

Key words: Protein-protein interaction network; transcriptome; topology; type 1 diabetes 

 

  Introduction  

    Type 1 diabetes (T1D) is an autoimmune disease with a strong genetic component, during 

which the pancreatic beta cells in the islet of Langerhans are selectively destroyed via 

activation of cellular immunity against self-antigens on these cells. This may efficiently 

hamper endogenous insulin production.1, 2  

    Genome-wide association studies (GWAS) data implicates the involvement of classical 

immunoregulatory pathways such as modulation of the IL-2 pathway, cytokine signaling and 

changes in subsets of T cells in T1D.3, 4 However, it becomes conspicuous from the earlier 

studies that this immunodysregulation results in T1D development, provided that initial beta 

cells damage has been occurred.5 In this regard, recent studies showed that pancreatic beta 

cells themselves express and release many cytokines and chemokines as early T1D might be 

influenced by this issue.6, 7 Therefore, it seems gene expression changes both in pancreatic 

beta cells and in immune effector cells may be needed to elucidate the disease molecular 

mechanisms. It is not easy to prepare pancreas samples of new-onset diabetic type 1 humans 
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because the death rate with appropriate management is extremely low.8  To address this issue, 

there is evidence that exploration of the full transcriptome of beta cells exposed to 

proinflammatory cytokines, such as interleukin-1b (IL-1B), tumor necrosis factor- α (TNF-α) 

and interferon-ɤ (IFN-ɤ), illustrates a snapshot of the responses of these cells under 

conditions which may dominate in early T1D.9 This procedure is considered as a well-

established in vitro model of T1D pathogenesis.10 Further to this, it has been supposed that 

islet-infiltrating immune effectors are in equilibrium with circulating pools and may be 

sampled in peripheral blood mononuclear cells (PBMCs).11, 12 The earlier studies have 

demonstrated that transcriptional profiling of PBMCs is a helpful tool for identifying gene 

expression signatures of autoimmune diseases.13, 14  

    Some biomarkers of human diseases have been successfully identified through genome-

wide analysis of gene expression profiles.15, 16 However, this method has failed in introducing 

of reproducible individual gene markers in some studies.17, 18 Furthermore, gene expression 

measurements for sorting genes into classical pathways or functional categories were not so 

effective to reveal disease markers because these methods might be limited to prior 

knowledge. To at least partially address this shortage, network biology and systematic 

bioinformatics data such as protein-protein interactions (PPI) and related pathways were 

introduced. 19 The aim of protein-protein interaction studies is to characterize known 

associations among the proteins in context of biochemistry, signal transduction and 

biomolecular networks. 20 In the recent years, the integrated analysis of large-scale gene 

expression data with PPI networks and topological analysis of subnetworks have prepared a 

promising approach to obtain a meaningful biological context in terms of functional 

association for differentially expressed genes. 21-23  

        In this study, Query-Query PPI (QQPPI) networks were constructed for T1D using 

genes which have different expression levels in PBMCs and pancreatic beta cells. Bilateral 
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cooperation between two tissues was explored via systems biology viewpoint. Topological 

analyses were performed, and functional modules & complexes were characterized in each 

network; several biological processes and pathways were identified by these analyses. 

According to association in functional module & complexes and the degree of centrality 

measures, some new key markers were identified. This is the first study by which significant 

markers have been introduced for T1D by topological and functional analysis of differentially 

expressed genes both in immune cells and pancreatic beta cells. The strategy of our work is 

shown in Figure 1. 

 Methods 

Sources of gene expression data 

In case of PBMCs gene expression profile, the raw data (CEL file) of microarray series data 

GSE9006 were downloaded from Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/). GSE9006 was published by Ellen C et al. in 2007; 14 

blood samples were obtained from 43 newly diagnosed T1D patients and 24 healthy subjects 

(mean age (9.5 vs 10.9 years) and the female to male ratio (25/18 vs 14/10)). To achieve 

pancreatic beta cells gene expression profile, we used the RNA-seq analyzed data of human 

pancreatic islet transcriptomes (GSE35296) that it was prepared by De´ cio L. Eizirik et al. in 

2012. 7 Human islets were obtained from the donors who were heart-beating organ donors 

with no medical history of diabetes or metabolic disorders. Five islet samples were isolated 

and cultured under control conditions and in the presence of cytokies (IL-1B + IFN-ɤ). On 

average, preparations contained 58% beta cells, which is similar to reported percentage of 

54% in isolated human islets and 55% in human pancreas. 

Selection of differentially expressed genes 

In case of PBMCs, RNA samples were analyzed by Affymetrix Gene Chip A (HG_U133A) 

and B (HG_U133B). Each chip (HG_U133A, HG_U133B) were normalized separately by 
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"affy" package of Bioconductor project. 24 After Robust Multi-array Average normalization, 

where a gene had more than one probe on the microarray, the average expression value of all 

the related probes was used to estimate expression level of the gene. The differentially 

expressed genes were computed based on ANOVA, considering additional variables such as 

ethnicity, race, age and gender effects between diabetic and control samples. The genes of 

corresponding probes with p-value < 0.05 were determined as abnormally expressed. For 

each gene, the minimal p-value (between HG_U133A and HG_U133B) was chosen. To 

estimate the fold changes in one condition vs another, a linear regression was performed. 25 

The fold change of each gene was determined by the chip which gave the more significant p-

value. In case of pancreatic beta cells gene expression, over and under expressed genes were 

extracted by Fisher exact test and the p-values were corrected by the Benjamin-Hochberg (p-

value < 0.05). 7  

2.3. Construction and topological analyses of the QQPPI networks 

The abnormally expressed genes in PBMCs and pancreatic beta cells were separately located 

on human PPI network which integrated from three major IMEx 26 public databases: IntAct, 

27 MINT 28 and DIP 29 to construct Query-Query PPI (QQPPI) networks, i.e., networks 

consisting of query genes as the nodes and direct interactions among them. Our recent study 

showed IMEx databases (especially IntAct and DIP databases) have the more number of 

significant correlations for their proteins' topological features than the all other paired 

comparisons between BIND, HPRD, MINT, IntAct and DIP databases. 30 The subnetworks of 

QQPPI were constructed using Cytoscape software 3.2.0. 31 Topological properties of QQPPI 

networks were analyzed by this software.  

    The topologically significant nodes were extracted from the networks in two steps: (1) In 

the networks, nodes with degree greater than or equal to the sum of mean and twice the 

standard deviation (S.D.), i.e., mean +2*S.D. of the degree distribution, were considered as 
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hubs. 32 (2) We defined bottlenecks as the proteins that were in the top 5% in terms of 

betweenness centrality. 

Identification and annotation of functional modules and complexes 

Clustering with overlap neighborhood expansion (ClusterONE) algorithm was used in order 

to identify the connected regions within the network with possible overlap. 33 The modules 

were identified to have a minimum density of > 0.05 and a degree of > 5. A cluster with a p-

value of < 0.05 was determined to be a module. The functional meaning for identified 

modules was further explored, and they considered as candidate functional modules if their 

genes were significantly enriched in biological process of Gene Ontology (GO) annotation or 

KEGG/REACTOME pathways. For this analysis, we used the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) tool, 34 with two cut-off criteria: Benjamin-

Hochberg corrected p-value <0.05 and the number of genes with specific GO terms >2. 

    Using Clique Percolation Method provided by CFinder software, the involving complexes 

were extracted from the PPI networks. 35 The complexes in the PPI networks were identified 

with the help of the database CORUM. 36 To find out related complexes, we gave each clique 

forming protein as query in the CORUM database. Then, all the proteins associated with a 

specific complex were determined by the in house algorithm. 37 

Results  

Determination of differential expression (DE) genes 

For PBMCs, 2466 genes were reported to have differential expression using ANOVA test (p-

value <0.05) that 1024 genes were up-regulated and 1442 were down-regulated. The genes 

and corresponding p-values are listed in the supplementary material Table 1. In case of 

pancreatic beta cells, we used the data of by De´ cio L. Eizirik et al. in 2012 7 in which 3068 

genes were significantly modified by exposure to the pro-inflammatory cytokines IL-1B plus 

IFN-ɤ. From these, 1416 and 1652 were respectively up and downregulated. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Exploration of bilateral cooperation between immune cells and pancreatic beta cells in 

T1D via gene expression profiles 

It was suggested that beta cells play active roles in inflammation as they can express 

chemokines and cytokines to attract effector immune cells during inflammation. 7 Given the 

concept of a "dialog" between pancreatic beta cells and invading macrophages and T cells in 

the course of insulitis, 6, 7 and no study has attempted to delineate it with systems approach, 

we therefore hypothesized that there may be found the bilateral relations between chemokines 

and cytokines genes expression between two circumstances (PBMCs/ beta cells). We found 

differentially expressed chemokines and cytokines in beta cells and their receptors in 

PBMCs. Table 1 summarizes the results, and Figure 2 illustrates this cooperation in the 

context of the PPI networks.  

    There are provided brief descriptions for each pair of discovered chemokines, cytokines 

and their receptors. To start with, CXCR2 is a chemokine receptor for chemokines of 

CXCL1, CXCL2, CXCL3 and CXCL5. This chemokine-receptor with mentioned 

chemokines mediated neutrophil migration to sites of inflammation. 38 Along with this, the 

study of Diana and Lehuen showed that macrophages and beta cells produced the chemokines 

CXCL1 and CXCL2 which recruited CXCR2-expressing neutrophils from the blood to the 

pancreatic islets during autoimmune diabetes in NOD mice. 39 The second, CXCR3 as a 

chemokine receptor is activated by three interferon-inducible ligands CXCL9, CXCL10 and 

CXCL11; interactions between this chemokine-receptor and these three chemokines induced 

the recruitment of T cells into inflammatory sites. 38 Antonelli and et al. study indicated that 

CXCL10/CXCR3 system had crucial role in the autoimmune process and destruction of viral 

infected beta-cells in T1D. 40 The third, CCR1 is a chemokine receptor that with their ligands, 

CCL3 and CCL5 mediated signal transductions which are critical for the recruitment of 

effector immune cells to the site of inflammation. 38 It has been proved from several mouse 
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models that CCL3 and CCL5 expressed in pancreatic islets and implicated in T1D 

development. 41 The fourth, CCR4 is a chemokine receptor for CCL22 that they also played a 

role in the trafficking of activated T lymphocytes to inflammatory sites. 38 There is reported 

that a pathogenic role for CCL22 was hypothesized based on reduced insulitis and diabetes 

frequencies in NOD mice treated with a neutralizing CCL22 antibody. 42 Additionally, there 

were some interleukins such as IL-6,  IL-1A and  IL-1B in beta cells and their receptors 

(IL6R, IL1R2 and IL1RAP) in PBMCs that all of them and their receptors have a major role 

in immune response especially in inflammation. With this in mind, there is evidence that 

interleukin 1 (IL‑1), in concomitant with tumor necrosis factor and interferon ɤ, induced 

apoptosis of pancreatic beta‑cells; clinical trials with IL‑1 antagonists have been initiated in 

patients with T1D. 43 In case of interleukin-6, Ryba-Stanislawowska et al. proposed an 

important regulatory role of IL-6 in the progression of diabetes and its complications. 44 As a 

last point, we also found interferon gamma (IFN-ɤ) and interferon β1 (IFN-β1) in PBMCs 

and their receptors (IFNɤR2 and IFNαR2) in beta cells. 

Topological analyses of QQPPI networks 

Our studied QQPPI networks were undirected and unweighted protein-protein interaction 

networks based on DE genes of both PBMCs and pancreatic beta cells in T1D. After removal 

of all orphan nodes, the QQPPI networks included 949 proteins and 1776 interactions in 

PBMCs and 1358 proteins and 3505 interactions in beta cells that they were used for further 

analysis. QQPPI networks have been studied by several topological parameters which gave 

more definitions about interactions network. Some global properties of the networks are 

shown in Table 2. The power law of node degree distribution is one of most important criteria 

of biological networks .The degree values approximately followed power law distributions 

( λkP(k) −= ), with λ= 2.13 and λ=1.95 for the PBMCs and beta cells networks, 

respectively, Figure 3, which indicated that the QQPPI networks were scale-free. The number 
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of hubs and bottlenecks was 29 and 48 in PBMCs and 40 and 68 in pancreatic beta cells 

networks. The hub-bottleneck nodes in PBMCs and beta cells networks are illustrated in 

Figure 4. The list of all nodes, hubs and bottlenecks in PBMCs and beta cells along with their 

topological parameters as obtained from Cytoscape software are prepared in supplementary 

materials Table 2 and 3. 

Identification of functional modules 

To better understanding of the biological processes or molecular functions under gene 

expression of T1D, in this study, the PPI networks have been decomposed into 11 and 12 

functional modules in PBMCs and pancreatic beta cells respectively by ClusterONE 

algorithm via Cytoscape. In case of PBMCs, the biological processes of inflammatory 

response, chemotaxis, defense response, immune response and the related pathways such as 

chemokine signaling pathway, cytokine-cytokine receptor interaction and signaling in 

immune system demonstrated the immune cells intermediation in the diseases pathogenesis. 

Response to DNA damage stimulus, an initiation of viral infection, and non-homologous end-

joining (NHEJ) pathway were the other significant biological processes and pathway. Finally, 

mRNA metabolic process, RNA splicing, ATP metabolic process, modification-dependent 

macromolecule catabolic process, proteolysis, translational initiation, proteasomal ubiquitin-

dependent protein catabolic process were the noticeable remaining biological processes; the 

relevant significant pathways included spliceosome, oxidative phosphorylation, metabolism 

proteins and proteasome (Table 3).  

    In case of beta cells, the majority of biological processes and pathways were related to 

immune response and apoptosis (Table 4). The more significant biological processes were 

chemotaxis, regulation of I-kappaB kinase/NF-kappaB cascade, antigen processing and 

presentation of peptide or polysaccharide antigen via MHC class I and antigen processing and 

presentation of peptide antigen via MHC class I. In this sense, Natural killer cell mediated 
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cytotoxicity, NOD-like receptor signaling, Chemokine signaling, B cell receptor signaling, T 

cell receptor signaling, cytokine-cytokine receptor and Toll-like receptor signaling pathway 

were the remarkable immune pathways. Apoptosis and p53 signaling were the apoptotic 

enriched pathways. Besides, there were some major biological processes such as regulation of 

protein modification process, positive regulation of DNA metabolic process, proteolysis, 

ubiquitin-dependent protein catabolic process, spliceosomes snRNP biogenesis, regulation of 

RNA metabolic process. Jak-STAT signaling and insulin signaling pathways were two 

noticeable pathways related to genetic information processing class. Positive regulation of 

cell proliferation, cell migration and cell communication were the last significant biological 

processes. Regulation of actin cytoskeleton and focal adhesion were two significant pathways 

for cellular processes class. The last remarkable pathway was neurotrophin signaling pathway 

that it established to be involved in T1D pathogenesis. 45  

Identification of complexes 

Several three and four cliques were identified in the QQPPI networks using CFinder 

software. The corresponding complexes were retrieved from the CORUM database and 

shown in Table 5 and 6. For PBMCs, the identified complexes involved in many biological 

processes like protein processing, proteasomal degradation, stress response, protein binding, 

protease activator (ID: 38, 39, 181, 191, 192, 193, 194)), protein biosynthesis (ID: 306),   

RNA processing and RNA binding (ID: 351, 1181, 1332), translation initiation (ID:742, 

1097), phosphate metabolism, transcription activation and protein modification (ID: 2601),  

transcription repression and DNA binding (ID: 2918), ribosome biogenesis (3055), cell cycle 

and  RNA synthesis (ID: 5593), apoptosis (ID: 5623). 

    In case of pancreatic beta cells, these complexes mediated various biological functions 

such as protein processing, proteasomal degradation, stress response, protein binding, 

protease activator (ID: 38, 39, 181, 191, 192, 193, 194), ), ribosome biogenesis and protein 
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biosynthesis (ID:306, 3055), RNA processing and RNA binding (ID:351, 1189, 1335, 5615), 

regulation of transcription (ID: 2084, 2086, 1335) , assembly of protein complexes (ID: 

2242), protein binding and cell adhesion (ID: 2376, 2383, 5342), cell cycle, protein 

modification and cellular signaling and adaptive cell mediated response (T-cells) (ID: 2470, 

2529, 2551), apoptosis, (ID: 2684, 4158, 5623), I-kappaB kinase/NF-kappaB cascade and 

cytokine activity(ID: 5193,5196, 5228, 5232, 5233, 5269, 5464, 5492 ), intracellular 

signaling cascade(ID: 5220, 5615), G-protein coupled receptor protein signaling pathway and 

cell migration(5342). 

Identification of key markers for T1D 

To identify key markers in QQPPI networks, we prepared the list of proteins which were hub-

bottleneck in each QQPPI network, and then we chose the hub-bottleneck nodes that most of 

them existed in both identified functional modules and complexes in the networks. It has 

been established that hubs and bottlenecks paly pivotal role in networks and considered as 

biologically significant proteins. 46, 47 The key markers and their functions are listed in Table 

7 and their locations in functional modules are shown in Figure 5.  

Discussion 

    Given the complex genetics of T1D, and the notion that ongoing molecular mechanisms of 

the disease contribute to the processes mediated both at the immune system and at the 

pancreatic beta cell level, 7 we thus combined transcriptome and interactome data in PBMCs 

and pancreatic beta cells to explicate the underlying biological pathways and to decipher 

missing heritability of this complex disease, which may be stealth within the gene network.   

    Here, for the first time, we were able to show the bilateral relations of PBMCs and 

pancreatic beta cells considering differentially expressed chemokines, cytokines and their 

receptors in both circumstances via systems approach. Our results verified that beta cells are 

not passive victims during pathogenesis. Pathway enrichment analysis implicated that 
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Immune response, apoptosis, spliceosome and proteasome, pathways of protein synthesis 

were the most significant enriched pathways in both tissues. However, in PBMCs, class of 

metabolism (Oxidative phosphorylation) and phosphate metabolism complex (ID: 2601) 

comprised one of the significant enriched pathways in functional modules and biological 

processes in complexes. It has been proposed that chronic hyperglycemia itself may affect 

directly or indirectly the PBMCs gene expression profile of untreated diabetes. 48 PBMCs 

thus reflect the systemic metabolic changes as well as abnormal immune regulation.     

    We have prepared compendium annotations of most relevant key markers, hub-bottleneck 

nodes involved both in functional modules and complexes, in terms of their up/down 

expression to just describe their possible role in T1D pathogenesis. For PBMCs, the first key 

marker was the Y-box binding protein 1 (YBX1/YB1) in module 1 and complex (ID: 3055). 

It was downregulated and incorporated in enriched spliceosome pathway. It has been reported 

that YBX1 gene plays role in cytokines mRNA stability which is important in autoimmune 

diseases. 49 Besides, there is evidence by which revealed an important role for YB-1 as a 

regulator of PTP1B (prototypic protein tyrosine phosphatase) expression. PTP1B considered 

as a critical regulator of insulin- and cytokine-mediated signal transduction. 50 The second 

and third markers were Proteasome subunit alpha 1/3 (PSMA1/PSMA3) genes that involved 

in module 6 and proteasome complex, and they were upregulated. They were member of 

enriched proteasome pathway. The ubiquitin proteasome system has salient biological role in 

the antigen processing and immune response as it could potentially be involved in 

pathogenesis of many immunity-related diseases. 51 The fourth marker, DNA non-

homologous end-joining repair gene (XRCC6) was downregulated and found in module 9 in 

which Non-homologous end-joining (NHEJ) was an enriched pathway and in complex (ID: 

2918). XRCC6 encodes an enzyme involved in V(D)J recombination, 52 the process of 

genetic rearrangement in generating B cell receptor and T cell receptor diversity. The work of 
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Khanna et al. showed that proteomic defects in XRCC6 may cause not only lower double-

strand break repair capacity, but also related to severe combination immune deficiency due to 

severely impaired variable division joining recombination capacity. 53 The last, SR 

(serine/arginine) protein kinase (SRPK1) gene, in module 4 and complex (ID: 3055), was 

upregulated. SRPK1 is activated early during apoptosis. The possible biological roles for 

SRPKs (1 and 2) are an involvement in signaling pathways governing apoptosis, alternative 

mRNA splicing, RNA stability, and possibly the generation of autoantibodies directed against 

splicing factors. 54  

    In case of pancreatic beta cells, there were 5 key markers, CBL, SRC, PIK3R1, PLCG1 

and SHC1 which mapped on module 1. E3 ubiquitin-protein ligase CBL (CBL) gene which 

located in complex (ID: 2529) inherently involves in pathway (cbl/cap pathway); this 

pathway is parallel one to insulin action for uptake glucose via GLUT4 translocator. 

Downregulation of this gene may be correlated to insulin resistance. 55 Non receptor tyrosine 

kinase (SRC) gene was upregulated and incorporated in complex (ID: 2470). There is study 

showed that inhibition of Src (c-Src) activation by Exendin-4 reduced endogenous ROS 

production and increased ATP production in diabetic GK rat islets. 56 Phosphoinositide-3-

kinase regulatory subunit 1 (PIK3R1) gene was downregulated and involved in complexes 

(ID: 2470, 2529, and 2551). Mutations in PIK3R1 as a regularity subunit caused primary 

immunodeficiencies especially antibody deficiencies (hypogammaglobinemia or 

agammaglobulinemia). 57 T1D has been reported in X-linked agammaglobulinemia (XLA) 

patients. 58 Phospholipase C, gamma-1 (PLCG1) gene was downregulated and involved in 

natural killer cell mediated cytotoxicity, the T-cell receptor signaling pathway, the Fc-epsilon 

RI signaling pathway and in complexes (ID: 2529, 2551). SHC-transforming protein-1 

(SHC1) gene was upregulated and located in ErbB signaling pathway, chemokine signaling 

pathway and insulin signaling pathway. Upregulation of p46Shc which induced decreased 
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insulin signaling sensitivity has been reported in ShcP mice. 59 All of five markers were 

incorporated in ERBb signaling pathway. Moreover, CBL, SHC1 and PIK3R1 genes were 

involved in both natural killer cell mediated cytotoxicity and neurotrophin signaling pathway, 

and CBL, SHC1 and PIK3R1 were incorporated into insulin signaling pathway. Finally, 

ubiquitin-conjugating enzyme E2N (UBE2N/UBC13) in module 5 was downregulated. The 

results of Chang et al study showed that Ubcl13 played crucial role in maintenance of the in 

vivo immunosuppressive function of Treg  cells and in inhibition of the conversion of Treg  

cells into TH1- and TH17-like effector T cells in a manner dependent on its downstream 

target IκB kinase (IKK) in mice. 60  

    In summary, this study shows that network biology can be considered as an effectual 

approach to get knowledge about the underlying etiology of complex diseases such as T1D 

and that data integration is pivotal to such analyses. The analysis of PBMCs and pancreatic 

beta cells transcriptomes propagated the concept of dialog between pancreatic islets and 

immune system, which mediated by cytokines and chemokines signaling pathways. 

Centrality , modularity and clique analyses of the constructed networks resulted in identifying 

significant biological pathways and genes. Finally, this network-based analysis facilitated 

experimental identification of new diagnostic biomarkers and the development of therapeutic 

targets.  
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Figures' legends: 

 

Figure 1. The study workflow. 
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Figure 2. Bilateral cooperation between immune cells and pancreatic beta cells in early T1D. 

 

Figure 3. Power law distribution of node degree. (A) Degree distribution of QQPPI network in 

PBMCs. (B) Degree distribution of QQPPI network in pancreatic beta cells. 
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Figure 4. Hub-bottleneck nodes in (A) PBMCs, (B) pancreatic beta islets. Upregulated and 
downregulated genes are illustrated by dark gray and light gray colures. 
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Figure 5. Functional modules involved key markers of (A) PBMCs, (B) pancreatic beta cells. Key 

markers were shown in bigger size than others. 
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Table 1 The list of differentially expressed ligand-receptor genes between pancreatic beta cells and 
PBMCs  
 
PBMC (receptors)
  

Pancreatic beta cells (ligands)        Major functions 

CXCR2  CXCl1,CXCL2,CXCl3,CXCL5  Neutrophil recruitment 

CXCR3                      CXCL9,CXCl10,CXCl11 Effector T cell recruitment 

CCR1  CCL3,CCL5  Mixed leukocyte recruitment 

CCR4  CCL22 T cell and basophil recruitment 

IL6R  IL-6  Inflammation and B cell maturation 

IL1R2,IL1RAP  IL1-A  Inflammatory processes and hematopoiesis                

IL1R2,IL1RAP  IL1-B  Mediator inflammatory responses 
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Table 2 Global properties of the networks. 
Average 

CF* 
Average 

ASP* 
Average    

CC* 
Average 

betweenness  
Average   
degree 

Number of edges Number of nodes   

0.048  4.404 0.268 0.011     1776                        3.75   949 PBMCs 
               

0.060   4.037 0.276 0.005      3508                         5.16   1358 Beta cells 

    CC: closeness centrality, ASP: average shortest pathlength, CF: clustering coefficient 

 

Table 3  The list of pathways enriched in modules for PBMCs. 
p-value                       PathwayModule ID           
1.6E-5 hsa03040: Spliceosome M1 

7.4E-5 hsa00190: Oxidative phosphorylation M2 

2.7E-9 REACT_1762: 3' -UTR-mediated translational regulation M5 

9.5E-8 REACT_17015: Metabolism of proteins  

1.1E-6 REACT_71: Gene Expression  

1.1E-5 hsa03050:  Proteasome M6 

1.8E-4 hsa04062: Chemokine signaling pathway M7 

3.3E-4 hsa04060: Cytokine-cytokine receptor interaction  

5.9E-3 hsa05120:  Epithelial cell signaling in Helicobacter pylori 

infection 

 

3.2E-4 hsa03450: Non-homologous end-joining M9 

7.1E-3 REACT_6900: Signaling in Immune system M10 
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Table 4 The list of pathways enriched in modules for pancreatic beta cells. 

p-value                        PathwayModule ID 
8.2E-6 hsa04650: Natural killer cell mediated cytotoxicity M1 

8.2E-6 hsa04810: Regulation of actin cytoskeleton  

6.7E-6 hsa04630: Jak-STAT signaling pathway  

5.9E-6 hsa04012: ErbB signaling pathway  

3.1E-6 hsa04666: Fc gamma R-mediated phagocytosis  

2.5E-5 hsa04510: Focal adhesion  

5.1E-4     hsa04062: Chemokine signaling pathway  

1.8E-4 hsa04664: Fc epsilon RI signaling pathway  

1.6E-4 hsa04662: B cell receptor signaling pathway  

1.4E-4 hsa04660: T cell receptor signaling pathway  

4.3E-3 hsa04060: Cytokine-cytokine receptor interaction  

1.4E-2 hsa04910: Insulin signaling pathway  

4.8E-2 hsa04722: Neurotrophin signaling pathway                                  

3.8E-2 

7.0E-5 

REACT_604:Hemostasis   

hsa04920: Adipocytokine signaling pathway                                

M2 

M3                        

8.1E-5 hsa04621: NOD-like receptor signaling pathway                           

9.6E-4 hsa04622: RIG-I-like receptor signaling pathway                          

5.2E-3 hsa04620: Toll-like receptor signaling pathway  

4.4E-8 hsa04940: Type I diabetes mellitus                                                

2.3E-6 hsa04514: Cell adhesion molecules (CAMs)                                 

1.4E-11 hsa03050: Proteasome M6 

3.8E-3 hsa04612: Antigen processing and presentation                            

1.2E-2 REACT_11052:Metabolism of non-coding RNA M7 

1.4E-3 hsa03440: Homologous recombination M8 

3.4E-2 hsa04115: p53 signaling pathway M11 

6.3E-3 hsa04115: p53 signaling pathway M12 

1.1E-4 REACT_578:Apoptosis  
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Table 5 The identified complexes in PBMCs  

Complex                      Symbol                            
Proteasome  (ID: 38, 39, 181, 191, 192, 193, 

194) 

PSMA1, PSMA3, PSMA4, PSMB7, PSMB3, 

PSMC2, PSMD6 

Ribosome, cytoplasmic (ID:306) RPS7, RPL35, RPL31,RPS10 

Spliceosome (ID:351) EIF4A3, PABPC1, SNRPA, SNRPA1, AQR, 

RBM22, IGF2BP3 

eIF3 complex  (ID:742, 1097) EIF3C, EIF3D, EIF3F, EIF3H, EIF3E, EIF3K, 

EIF3J, EIF3M 

C complex (ID:1181) EIF4A3, PABPC1, SNRPA, SNRPA1, AQR, 

RBM22, HNRNPA2B1, HNRNPM 

Large Drosha complex (ID: 1332) SRPK1, EWSR1, FUS, HNRNPM 

P-TEFb-BRD4-TRAP220 complex1,  (ID: 

2601) 

CCNT1, CDK9, MED1  

 Ku antigen-YY1-alphaMyHC promoter 

complex (2918) 

XRCC5, YY1, XRCC6 

Nop56p-associated pre-rRNA complex (ID: 

3055) 

RPS7, YBX1, SRPK1, RPL35, RPL31, SLC25A5, 

SRP14, HNRNPM 

LINC core complex (ID: 5589, 5593) LIN37,  LIN54,  RBBP4 

Ask1-HSP90-AKT1 complex (ID: 5623) HSP90AA1, MME, MAP3K5 
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Table 6 The identified complexes in pancreatic beta cells 

Complex                      Symbol 
Proteasome  (ID: 38, 39, 181, 191, 192, 193, 

194)                  

PSMA3, PSMA6, PSMA7, PSMB1, PSMB7, 

PSMB8, PSMB9, PSMC4 

Ribosome, cytoplasmic (ID:306) RPL11, RPL5, RPS13, RPS16, RPS4X 

Spliceosome (ID:351) CDC5L, DDX17, DDX5, EIF4A3, PRPF8, 

SNRNP200, SNRPE, SNRPG, SRRM1 

C complex spliceosome (ID:1189) CDC5L, DDX5, EIF4A3, HNRNPC, HNRNPM, 

PRPF8, SNRNP200, SNRPE, SNRPG, SRRM1 

CDC5L complex (ID:1183) CDC5L, DYNC1H1, GCN1L1, PPP1CA, SRRM1 

SNW1 complex (ID:1335) 

  

CDC5L, DDB1, EEF1A1, PFKL, PRPF8, 

SNRNP200, TUBB 

NFKB1-NFKB2-REL-RELA-RELB complex 

(ID: 2084, 2086) 

NFKB1, NFKB2, RELA, RELB 

TGM2-HD-CALM1 complex (ID: 2242)  CALM1, HTT, TGM2 

ITGA2B-ITGB3-FN1-TGM2 complex , 

ITGA5-ITGB1-FN1-TGM2 complex (ID: 

2376, 2383) 

FN1, ITGB3, ITGA5, TGM2 

p130Cas-ER-alpha-cSrc-kinase- PI3-kinase 

p85-subunit complex (ID: 2470) 

BCAR1, ESR1, PIK3R1, SRC 

LAT-PLC-gamma-1-p85-GRB2-CBL-VAV-

SLP-76 signaling complex (ID: 2529) 

CBL, PIK3R1, PLCG1, VAV1 

PDGFRA-PLC-gamma-1-PI3K-SHP-2 

complex, PDGF stimulated (ID: 2551) 

PDGFRA, PIK3R1, PLCG1 

p53-Bcl-xL complex, DNA-damage induced 

(ID: 2684) 

BCL2L1 , TP53 

Nop56p-associated pre-rRNA complex (ID: 

3055) 

EEF1A1, HNRNPM, RPL11, RPL5, RPS13, 

RPS16, SLC25A5 

HSP90-FKBP38-CAM-Ca(2+) complex (ID: 

4158) 

CALM1, HSP90AA1, HSP90AB1 
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TNF-alpha/NF-kappa B signaling complex 

(ID: 5193, 5196, 5233, 5269) 

NFKB1, NFKB2, NFKBIA, NFKBIB, NFKBIE, 

RELA, RELB, TNIP2, BTRC, IKBKE, GTF2I, 

MAP3K8, RPS13, IQGAP2, HSP90AA1, 

HSP90AB1 

CHUK-IQGAP2-AKAP8L-RELA-TNIP2 

complex (ID: 5220) 

IQGAP2, RELA, TNIP2 

REL-MAP3K8-RELA-TNIP2-PAPOLA 

complex (ID: 5228) 

MAP3K8, RELA , TNIP2 

CHUK-NFKB2-REL-IKBKG-SPAG9-

NFKB1-NFKBIE-COPB2-TNIP1-NFKBIA-

RELA-TNIP2 complex (ID: 5230) 

NFKB1, NFKB2, NFKBIA, NFKBIE, RELA, 

TNIP1, TNIP2 

ELMO1-DOCK1-RAC1 complex (ID: 5342) LMO1, RAC1 

I(kappa)B(alpha)-NF(kappa)Bp50-

NF(kappa)Bp65 complex, IKBA-

NF(kappa)Bp65-NF(kappa)Bp50 complex 

(ID: 5464,5492) 

NFKB1, NFKBIA, RELA 

Emerin complex 52 (ID: 5615) HDGF,  NMI, PDCD4, YWHAE 

Ask1-HSP90-AKT1 complex (ID: 5623) HSP90AA1, HSP90AB1, MAP3K5 

 

 

 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 Table 7 Brief description of hub-bottleneck nodes in functional modules & complexes 

  Function  Complex Module Fold change 
direction (1 
increase,-1 
decrease) 

Symbol    

     PBMCs 

ATP-dependent helicase involved involve in 

DNA non-homologous end joining (NHEJ)     

 ID: 2918 9 -1                XRCC6 

Mediates pre-mRNA alternative splicing 

regulation 

 ID: 3055 1 -1 YBX1 

Protein kinase involved in the regulation of 

splicing 

  ID: 3055 4   1 SRPK1 

Proteasome's subunit 1 that it cleaves peptides 

in ATP/ubiquitin-dependent process  

 ID: 38, 39, 191 6  1 PSMA1 

Proteasome's subunit 1 that it cleaves peptides 

in ATP/ubiquitin-dependent process 

 ID: 191, 192, 193 6  1 PSMA3 

Probably involved in translation   5  1 EIF1B 

Participant in the initiation of protein synthesis  ID: 742, 1097 8 -1 EIF3D 

     Beta cells 

Adapter protein that functions as a negative 

regulator of many   signaling Pathways 

 ID: 2529 1 -1 CBL 

Non-receptor protein tyrosine kinase involved 

in signal transductions 

 ID: 2470 1  1 SRC 

Binds to activated (phosphorylated) protein-Tyr 

kinases and acts as an adapter 

 ID: 2470, 2529, 

2551 

1 -1 PIK3R1 

Mediates the production of the DAG and IP3 

which has  an important role  In signaling 

cascades 

 ID: 2529, 2551 1 -1 PLCG1 

Signaling adapter that couples activated growth 

factor receptors to signaling pathway 

  1  1 SHC1 

NF-kappa-B is a pleiotropic transcription factor 

and endpoint of  a series of signal transduction 

 ID: 5220, 5230 3,10  1 RELA 

(NFKB3)     
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events 

Proto-oncogene which regulate genes involve 

in apoptosis, inflammation, the immune 

response 

  3  1 REL 

it functions as a central activator of genes 

involved in inflammation and immune function 

 ID: 2086, 5230 3  1 NFKB2 

NF-kappa-B is a pleiotropic transcription factor 

and endpoint of  a series of signal transduction 

events 

 ID: 2084, 5464 3  1 NFKB1 

it inhibits NF-kappa-B/REL complexes which 

are involved in inflammatory responses 

 ID: 5230, 5494 3  1 NFKBIA 

member of the E2 ubiquitin-conjugating 

enzyme family 

  5 -1 UBE2N 

Ubiquitin-like protein that covalently attach to 

proteins 

  9 -1 SUMO1 

Acts as a tumor suppressor in many tumor types  ID: 2684 11 -1 TP53 
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